

GLV - testing Gas Liquid Calculator

GLV testing in ConocoPhillips

• Well design makes GLV part of primary barrier envelope.

- According to NORSOK:
 - "Gas lift valves and chemical injection valves shall be periodically tested according to EAC 8."
- According to EAC 8:
 - The valve shall be leak tested at specified regular intervals as follows:

 a) monthly, until three consecutive qualified tests have be performed; thereafter
 b) every three months, until three consecutive qualified tests have been performed
 c) every six months;

d) test evaluation period is volume and compressibility dependent and shall be held for a period that will give measurable pressure change for the allowed leak rate, minimum 30 min.

• 1-1-1-3-3-3-6

GLV testing in ConocoPhillips

- Direct Measurement (LMS-testing)
 - Bleed A-ann to 50% of tubing pressure
 - Liquid leak measured
- Inflow Test (Calculator)
 - Bleed A-ann to 0 psig
 - Liquid level is known
- Gas leak criteria 15 scf/min
- Liquid leak criteria 0,4 l/min

LMS testing

- Annulus A is depressurized and tubing is pressurized to create a differential pressure across GLV/Tubing.
- LMS measures leak into annulus A by bleeding through unit while keeping annulus A pressure constant.
- Acoustic measurements is used to detect changes in liquid level.

Excisting GLV calculator

- A project was initiated in 2016.
 - LMS vs. Calculator
 - Possible using calculator while bleeding annulus A to 50% of tubing pressure?
- The existing calculator was analyzed built on ideal gas law

$$\bar{Q}_{gas} = \left(1 - \frac{p_i + 14.7}{p_t + 14.7}\right) * 70.75 * V_{gas} * \frac{p_t + 14.7}{(FTHT + 1170) * t}$$

• Approach

- Tests was evaluated in order to compare results from LMS vs. Calculator.
- Plotted result using calculator on PBU-data vs. leak rate measured

Results using old calculator

New GLV Calculator

- Analysis
 - Old gas calculator slightly underestimates leak rate when not bleeding to zero.
 - Introduced Z-factor (real gas law)

•
$$\bar{Q}_{gas} = \left(1 - \frac{(p_i + 14.7)Z_t}{(p_t + 14.7)Z_i}\right) * 70.75 * V_{gas} * \frac{p_t + 14.7}{(FTHT + 1170)*t}$$

• Performed same analysis on tests using new formula

Results using new calculator

Liquid leaks

- Calculator was developed
 - utilizing pressures on both downhole and topside gauges to calculate changes in liquid level.
- Weight of leaking fluid. Assumed to be equal to produced fluid

•
$$P = \rho * g * h \rightarrow \Delta h = \frac{\Delta P_{Downhole} * *}{\rho * g}$$

- **Changes in surface pressure is also taken into account.
- Use Δh to calculate volume : $V_{liquid} = \Delta h * Volume \ capacity$

•
$$Q_{liquid} = \frac{V_{liquid}}{time}$$

- Calculator verified against acoustic surveys performed on wells with down hole gauges.
 - Tests was evaluated in order to compare calculator vs. acoustics

Gauge

 Δh -

End product

GLV Gass-Lekkasjekalkulator			Felt	Ekofisk			Dato:	08.06.2017			
			Platform	EKOM			Tid test starte	et: 00:00			
					Brønn	M-01			Utført av:		
Celler med grå bakrunn må fylles ut		Element	SPM A								
	Cha= 1					Store 2				Star 2	1
Vgass	3739 ft3				Vgass	5teg 2			Vgass	4739 ft3	
Trykk start	barg		Mangler data		Trykk start	0,000 barg	Mangler data		Trykk start	0,000 barg	
, Trykk slutt	barg		• •	_ \	Trykk slutt	barg			Trykk slutt	barg	
Tid	30 min				Tid	60 min			Tid	180 min	
Temp.	°C				Temp.	0 °C			Temp.	0 °C	
Lekkasjerate:		Lekkasjerate:			r	Lekkasjerate:					
Qgass 0,000 scf/min			Qgass	0,000 scf/min			Qgass	0,000 scf/min			

GLV Væske-Lekkasjekalkulator

Avblødningstest							
	Før avblødning	g Et	ter avblødn	ing			
Trykk overflate		psi		psi			
Trykk nedihulls		psi		psi			
Gauge Dyp	9074,6	TVD					
Tid	120	min					
Væsketetthet	5,92	ppg					
Væskelekkasjerate	0,000	l/min	Godkje	ent			

Vannkutt

GLC - (Gas	Liquid	Calcu	lator v.	2,00
---------	-----	--------	-------	----------	------

Steg 1							
	Start		Slutt				
Trykk overflate		psi		psi			
Trykk nedihulls		psi		psi			
Gauge Dyp	9074,6	TVD					
Tid	30	min					
Væsketetthet	5,92	ppg					
Væskelekkasje	0,000	l/min	Godkj	ent			

	Konvertering og tetthetskalkulator						
	50,162	bar	727,538	psi			
Auto	25,69	% WC	5,92	ppg			
Manuel	50	% WC	6,80	ppg			

	Steg 2								
		Start		Slutt					
Λ	Trykk overflate		psi		psi				
	Trykk nedihulls		psi		psi				
	Gauge Dyp	9074,6	TVD						
\mathcal{V}	Tid	30	min						
	Væsketetthet	5,92	ppg						
	Væskelekkasje	0,000	l/min	Godkjer	nt				

- GLC wells
 - All wells with working annulus downhole pressure monitoring
 - Wells without liquid level monitoring possibilities (acoustic measurements or pressure)

- LMS wells
 - Wells with no downhole pressure monitoring where possible to measure liquid changes using acoustics.

• Identified test-installations for building experience

• Created a detailed guideline for using GLC

• Weekly training sessions by video with all involved personell

• Optimized GLC and guideline based on feedback from offshore

Results

- Increased safety
 - Less personell exposure in wellhead area
 - Reduced number of leak points during testing

- Reduced cost
 - All testing performed by COP personnel
 - No extra equipment required
 - Increased flexibility

- Increased well uptime
 - Well downtime related to testing of GLV's reduced by >30%.

