

"Why Shale **Could** be used as a Permanent Well Barrier Element"

Tron G. Kristiansen, Geomechanics Advisor, Global Wells Organization, BP P&A Forum 29 October 2015, Stavanger

Outline

- Shale what is it?
- Comparing shale and cement
- Mechanisms that form good shale barriers
- How to actively form a shale barrier
- Possible concepts for future tools to promote shale barriers
- Summary

Shale – what is it?

- Argillaceous (clay-rich) rocks are the most abundant sediment on the earth
- Clay rich rocks comprise between 50-75% of the geologic column
- Lithotypes: Unlithified muds and clays, moderately indurated mudstones and claystones, fissile and often highly indurated shales, metamorphosed (argillites and slate)
- A number of different classification attempts between 1922 and 1981
- Several disagreements in terminology and definitions
- In drilling discipline in O&G industry, we typically call it shale

Shale at the Nano Scale

A BP shale, photo by SINTEF

- Shales are geology's "trash can", can consist of any mineral available and organic content
- Several clay mineral groups (Kaolinite, Halloysite, Vermicullite, Illite, Smectite, Chlorite, Mixed-layer, Palygorite)
- Clay particles have large specific surface area, ultra small particles and pore throats
- Complex interaction between mineral surface, water surfaces and dissolved chemical species occur (colloidal and surface chemistry)
- Pore apertures can be in the 1 nano meter range, so surface charge including anion exclusion do have an effect on mass transport, i.e. very low permeability
- "Plasticity" in shales is a result of fluid-assisted interparticle motion

Properties of North Sea Shales

- Main mechanical properties and porosity can be estimated from compressional wave velocity (see also paper from Horsrud, 2002)
- Permeability can be estimated from log driven models
- Matrix permeability of natural clay media varies from 10 micro Darcy for glacial till (at surface), through 0.1 micro Darcy for a typical overconsolidated clay to 0.1 nano Darcy for an oil-field shale (Horseman et al.,1996)
- 21 nano Darcy to 6.6 micro Darcy for North Sea field study (Kristiansen, 1998)
- Low enough permeability to trap gas and oil for millions of years

Cement Material Reference Data

- For reference purposes, relevant properties of a hardened neat Class G
 Portland cement with a density of 1,892 kg/m³ (15.8 lb/gal):
 - Permeability 10-20 micro Darcy
 - Cohesion of 2014 psi and Internal Friction Angle of 15 degrees gives a UCS of 5250 psi (36.2 MPa)
 - Young's modulus from 6.5 to 10.14 GPa

O&G UK, 2012

Comparison of Leak Rates

- Example: The Oil & Gas UK Guidelines for the suspension and abandonment of wells [Ref 2] require 30.5 m (100 ft) of good cement. Using a permeability value typical for good cement (20 microdarcy) and a pressure differential of 6.9 MN/m² (1,000 psi), a release rate of **0.25** m³ of gas per year would be obtained for this length of barrier in a 7" casing, assuming the absence of cracks or micro-annuli.
 - Therefore, it is deemed appropriate that the performance criteria for mass transport through permanent barrier materials should be equivalent to that of good cement.

O&G UK, 2012

$$Q = -\kappa \cdot A \cdot \left[\frac{(p_1 - p_2)}{\mu \cdot L} \right]$$

For same barrier dimensions and ΔP :

$$Q \alpha k$$

- For typical shale permeabilities the leak rate will be 0.0025 to 0.0000025 m³ of gas per year
- Calculations therefore indicate that a few metres of shale will have a similar effect to several hundred metres of cement

Mechanisms Forming Shale Barriers

- Elastic deformation (generally too small)
- Elasto-plastic (maybe enough in some cases)
- Time dependent plastic deformation, creep (enough in many cases)
- High clay and especially smectite content enhance creep
- High shear stresses enhance creep
- Pressure effects in annulus and near wellbore region impacts creep
- Thermal deformation from heating will increase creep
- Some shale-brine interaction effects will enhance creep
- Rapid shock (<u>if</u> resulting in "liquefaction" or "ductile" or "plastic" failure without macroscopic cracks and fractures) could close an annulus rapidly

Shales are accepted as barriers and barrier material following NORSOK D-010 and Oil & Gas UK Guidelines

Self Healing of Cracks in Shale

Frac. Permeability α E

Frac. Strength α UCS

- Small cracks are formed around the borehole in the drilling process
- This cracked zone is called the excavation damage zone (EDZ) in the nuclear waste industry
- Cracks can form in the cement after setting (thermal and pressure loads)
- For a given normal stress on the crack, the crack in the material with the lowest Young's Modulus will be less conductive and for lowest UCS will tend to close (self-heal)
- Self healing is much more likely to take place in a weak, soft and ductile material
- Self healing of cracks has been reported from nuclear waste storage host rocks with several hundred psi UCS at a few hundred meters depth

Nuclear Waste – Use of Shale as Barrier

High-Level Waste Storage

Safety barriers in a repository for high-level waste.

- 1. Glass matrix, containing radioactive material
- 2. Metal container
- 3. Backfill with bentonite
- 4. Host rock usually shale

Promoting Shale as Barriers – a natural occurrence during liner drilling?

- Example: drilling liner in the Paleocene, North Sea
- 1. Initial pressure (14.7 ppg/41 MPa)
- 2. Sudden pressure drop in 2 minutes when drilling into depleted reservoir (7 ppg/20 MPa)
- 3. Sustained low annulus pressure (1 hr) until ball is seated
- Pressure is increasing as pump rate needed in annulus decrease (1.5 hr) (30 MPa)
- Pressure increased to 13.9 ppg/39 MPa)

Could the same effect be invoked through a controlled pressure cycle?

Numerical Simulation of Drilling Liner Scenario

What to look for in movie:

- Initially you will see the shear stresses while drilling (elliptical distribution)
- You will then see the rapid increase in shear stress (hotter colors) following the large pressure drop as we drill into the reservoir
- The shear stresses then reduce as the shale is failing in a ductile/plastic manner (colder colors)
- 4. The annulus then slowly closes
- 5. As the shear stress is approaching zero ("liquefied state", no shear strength) the annulus is closing rapidly, even if the pressure in the annulus is actually increasing

Conceptual Tools: How might we induce shale collapse to form a barrier?

- What other methods or configurations might be used ?
- Could this be used on new wells instead of cement in some situations?

"Why Shale <u>Could</u> be used as a Permanent Well Barrier Element": Summary

- In some cases, shale properties appear favorable as a potential well barrier
 - Leak rates are low in shale/clay material
 - Self-healing of cracks in shales when stress is high compared to strength
- Nuclear waste industry's main barrier outside the glass matrix and metal container is shale (extensively researched)!
- Can shale barriers be rapidly formed by design (through pressure/temperature/fluid manipulation) as seems to be occurring naturally in the case of liner drilling?
- Further fundamental work is needed to understand the limitations of this new approach. Current activity includes
 - SINTEF JIP on Shale as Barrier ongoing with support from Norwegian Research Council, BP, CoP, Dn, Shell & Statoil
 - SINTEF JIP On Bond Logging Technology for review by Norwegian Research Council (and supported by BP, CoP, Dn, Shell & Statoil)