

Operations in Low Temperature & Ice Infested Environments

Dan Oldford Sr. Engineer, Harsh Environment Technology Center

Trondheim 20 May 2014

Norsk olje og gass

Outline

- ABS Technology
- Some personal experiences
- ABS History in the Arctic and Sub-Arctic
- ABS Guide for Vessels Operating in Low Temperature Environments (LTE)
- Recent and Present Projects
 - Risk-based winterization
 - Hydrophobic coatings
 - STePS2
 - High speed simulation

ABS Technology

- Research and development arm of ABS
- Projects address technical issues
 - Industry demands
 - Enhance ABS technical capabilities
 - Support ABS divisions
- Collaborative approach
 - Joint development project (JDPs)
 - Joint industry projects (JIPs)
 - Industry, academia and government partners
- Global reach
 - Technology centers

ABS Worldwide Network

ABS History in Cold Regions

- Arctic
 - Manhattan
 - Glomar Beaufort Sea 1
 - Moliqpak
 - SSDC
 - Kulluk
- Sub Arctic
 - Glomar Atlantic (NL)
 - Sedco 710 and 706 (NL)
 - Rowan Juno, Gorilla III, Gorilla V (NS)
 - GSF Galaxy II (NS)

Effects of Cold: Machinery

Effects of Cold: Machinery

ABS LTE Guide

- Guide for Vessels Operating in Low Temperature Environments (LTE)
- Address winterization issues not covered by ice class
 - Response to client feedback; unsatisfactory equipment performance on ice class vessels
 - Increased trade in Arctic and Baltic regions
- Developed with
 - Internal personnel with Baltic and polar experience
 - Input from ice experts and shipbuilders
- Originally published September 2006
- Updated May 2012

Where to Get the ABS LTE Guide?

- Apple App store "ABS Bookshelf"
- It's a free download at www.eagle.org see Publication No. 151

ABS LTE Guide

- Two documents in one
 - Guide requirements
 - Guidance Notes as appendices with additional explanations
- Supplementary information
 - Weather conditions
 - Additional reference materials
 - Administration listings
 - Meteorological organization listings

Minimum Air Temperatures for North/South Polar Regions - February

General Section

- Application
 - Any vessel or marine structure operating in cold area
 - Ice-covered or non-ice covered seas
 - Exposed hull structure materials must be suitable
 - Design service temperatures ≤ -10°C
- Objective
 - Improve vessel and system performance

Temperature Definitions - DST

Commonly used Definitions of Temperature

Temperature Definitions - MAT

- Minimum Anticipated Temperature (MAT)
 - Specified by the owner, designer, shipyard
 - In absence of temperature data -20°C lower than DST for exposed machinery (MAT = DST -20)
 - Generally used for machinery requirements

Materials Selection

- Material grade selection basis
 - Temperature
 - Application
 - Material thickness
- Hull structural members
 - Design Service Temperature (DST)

- Exposed machinery and associated foundation components (load bearing)
 - Minimum anticipated temperature (MAT)
 - Cranes have their own low temperature requirements

Tanks

- Fuel Oil Tanks
 - Location will determine heating requirements
 - Heating calculations to show sufficient heat transfer capacity
 - POT class notation
- Fresh Water Tanks
 - Practice is to avoid contact with shell
 - Turbulence system or heating coils
- Ballast Water Tanks (Preload)
 - Antifreezing DST from -10°C to -30°C
 - Requiring heating coils for DST < -30°C
 - Tank heating calculations

Systems & Machinery: Engines

- Low power operation considerations for auxiliary equipment
- Combustion air direct ducting and preheating
- Turbochargers
- Lubricating oil systems
- Pre-heating and cooling systems

Systems & Machinery

- Piping
 - Materials suitable for MAT
 - Piping arranged to drain fluids
 - Keep pipes from freezing
- Fire safety systems
 - Fixed extinguishing systems
 - Portable extinguishers
 - Fire mains
- Electrical
 - Emergency source
 - Motors
 - Cables
- Propellers

Safety Systems

- Heating for survival
- Lifesaving appliances
 - Protective clothing
 - Life boats
 - Larger size
 - Heaters
 - Engine starting
 - Life rafts
 - Launching arrangements
 - Alarms and communications
- Drills and emergency instructions

LTE Guide Appendices

- Effects of wind, such as ice accretion (Appendix 3)
- Experience based solutions to machinery problems (Appendix 4)
- Human factors (Appendix 8)
- Training and Documentation (Appendix 9)
- Temperatures and climatic information (Appendix 10)
- Notes on vessel operations (Appendix 11)

Risk-based Winterization

- Project with experts from Memorial University of Newfoundland
- In line with ABS Novel Concepts Guide
- Define acceptable risk for given system and the unit as a whole
- Environmental loading is a fluctuating random variable
- Design winterization solution to minimize the risk
- Example: Crane

Ice Accretion is a Critical Safety Issue

Ladders & Lifesaving Devices

Electrical/Equipment Panels

Derricks & Drilling Equipment

Controlling the Contact Angle

- Super-hydrophobicity combines low surface energy and roughness
- First step, GWU examined the correlation between ice adhesion strength and contact angle

 θ < 90° hydrophilic θ > 90° hydrophobic θ > 120° superhydrophobic

George Washington researchers obtaining contact angles over 155 °

Icephobic Nano-Structured Coatings & Surfaces

Early success of ABS funded research at George Washington University on icephobic surfaces – but main aim is to develop a performance evaluation standard

- Developing direct design tools for the next generation of polar ships and structures
- Major funding from industry, Canada government agencies
 - 5-year (2009 2013), \$7 million program wrapping up over next few months
 - 5 industry partners
- Focus on
 - Physical experiments
 - Numerical simulations
 - Design tools

Ice Cone Crushing Tests

STePS² Large Grillage Experiments

- Structure
 - ~PC6/7 midbody icebelt scantlings
- Ice

- Lab-grown polycrystalline ice
- Controlled and repeatable

26

STePS² Large Grillage Experiments

Possible crack at web connection

Ice Interaction Simulation using GPU Computing

- Graphic Processing Units (GPU) are used
 - Thousands of processors
 - Movies and computer games

Intel i7 chip (4 cores)

NVIDIA GTX690 GPU (3072 cores)

GPU-based Discrete Element Method (DEM)

- Objective: To develop a practical and advanced tool for assessing the loads on offshore structures from various ice features
- Approach: Discrete Element Method (DEM) jointly developed by ABS and Dalian University of Technology

GPU-based Event Mechanics (GEM) Simulation

- Large number of separate solids:
 - Discrete impact events (10N contacts)
- Body kinematics between events

Continuum Mechanics

Questions?

www.eagle.org

