

Closing knowledge gaps

Statoil

The challenge

Background

- x-Hydro prospects in Alaska, in Kara Sea and on Kharyaga onshore:
 - Fire water of great concern
- Alternatives
 - Additives
 - Glycols? Environment? Energy?
 - Potassium formate (CHKO₂) «Aviform» 50 % solution

Daily mail: From a fire in Chicago 2006

 Land-based experience Norway - «Challenge starts at -25 °C»

Work so far – in Statoil

- Several literature studies from x-Hydro on alternatives/additives
- Pre-study for x-Hydro at SINTEF (simple water pipe transport at ca. -35 °C)
- Simple mathematical model developed for Brilliant/Vessfire (Petrell)
- Decision to contract preparation for experiments
 - Goal: Model development for freezing of water
 - Simplification: Fresh water salt water complicates model development
 - Modellers
 - Acona (Fluent/OpenFoam)
 - ComputIT (KFX)
- Status: Two separate proposals for experimental campaign

What has been done (2007)

- Freeze experiments for water transport in pipelines and nozzles down to ca. -35°C
 - Diameters
 - Flow
 - Material
 - Nozzles
- Results indicates that with sufficiently big flow the pipes will not freeze.
- There seems to be significant deviations from one piping material to another.

What has been done (2013)

- The studies by Acona and ComputIT
- They were asked to set up tests for 7 different issues:
 - Pipes
 - Bends
 - Deluge nozzles
 - Water spray
 - Ice accretion on process equipment
 - Ice accretion on deck
 - Drain system

Test parameters – possiblilities

- Transport (piping)
 - Flow velocity 3 10 m/s
 - Diameter 1" 2"
 - Length up to 40 m
 - Piping material? Elastopipe, GRP, steel
 - No. of bends? (Recirculation zones) < 10
 - Look into/including T-s
 - Horizontal/vertical transport? Mostly horizontal
 - Nozzle? Yes, practical engineering. HV and MV
- Water spread nozzle to deck
 - Experiments needed?
 - Foam?
- Ice accretion (on deck) later experimental campaign?
 - Large, complex and expensive experiments
 - Drain?
- Wind?
 - Will probably have effect

Daily mail: From a fire in Chicago 2006

Status

- Acona proposal
 - Small scale lab test of nozzle and ice accretion
 - Medium scale container test of freezing in pipe
 - Large scale hall test for «realistic» layout
- ComputIT proposal
 - Pre-experiments to investigate instrumentation possibilities
 - Small/medium scale «water bed» tests to look into basic freezing physics
 - Combined medium/large scale hall test for all challenges

Acona proposal (Fluent, OpenFOAM)

ComputIT proposal (KFX)

(Basic instrumentation tests)

Basic freezing of running water

Real scale tests

What will be done – 2014-

- ENI and Statoil join forces costly experiments
- We will invite consultants companies to participate in an open tender for experiments
- We also recognize the need to develop models that can predict behaviour at other temperatures
- This will make us able to predict what will happen in other systems with other flows, temperatures, diameters, etc.

Challenges - Winterized and enclosed the installations

- Drilling and production installations in the Arctic will have to be winterized i.e. you have to close modules to be able to work there
- This way the temperature can always be above freezing so the problems are solved?
- The philosophy on the NCS is to have open installations to have a good ventilation in case of a gas leakage – any gas leakage will be sufficiently diluted to prevent severe consequences.
- So we need to have an open installation?

The practical approach

- Winterize and close all areas that do not have higher risk for gas leakages
- Minimize the areas that have to be open/ventilated and try to reduce the need for maintenance/work in these areas
- Develop better clothing and PPEs for cold climate
- Develop active wall panels that opens on confirmed gas detection?

What else can we do?

- Re-look into alternatives and/or additives?
 - Requires enclosures
 - Water mist mist or fog?
 - Inergen
 - Do we want to extinguish fires?
 - Requires storage space
 - Glycol, e.g. MEG
 - Requires energy
 - Heat tracing
- «Wait and burn out»?
 - Passive fire protection always required anyway

There's never been a better time for **GOOD ideas**

What about firewater in the Arctic

Steingrim Bosheim Leading researcher E-mail address: sbos@statoil.com Tel: +47 913 10 317

www.statoil.com

