DNV·GL

OIL & GAS Eksplosjonsrisiko, værbeskyttelse og optimalisering av design

HMS utfordringer i Nordområdene – Arbeidsseminar 4

Asmund Huser 20 May 2014

Content

- Challenges and Objectives
- Explosion risk analysis as decision making tool
 - Explosion theory
 - Example FPSO in arctic
- Wind chill and outdoor operations
 - Theory and principles
- Typical scope ERA and Wind Chill Analysis
- Optimization of design
 - Improving ventilation with passive and active systems
 - Mitigating explosions
- Summary and recommendations

Main safety challenges in arctic

- Ensure safe design wrt process safety and working environment
- Objectives:
 - Give recommendations and decision support in order to optimize working environment AND safety
 - Comply with regulations

Explosion risk analysis as decision making tool

Overall risk analysis and risk based design procedure

Break down and organize consequences Start and frequencies – Examination **Establish** Simulate all events – Risk Analysis **Scenarios** Consequences **Frequencies** CFD LEAK Point at risk drivers – Diagnosis **Risk assessment Mitigate** Deliver design improvements e.g. EXPRESS Find solutions together with contractor **Escalation?** Yes No Stop

Explosion Risk Analysis approach

Large semi-sub

DNV GL © 2013 20 May 2014 Veritas 20 May 2014 AS. All rights

Gas leak starts, t = 0 s

Gas leak dispersion simulation, *t* = 5 s

Gas leak dispersion simulation, *t* = 10 s

Gas leak dispersion simulation, *t* = 15 s

Gas leak dispersion simulation, *t* = 20 s

Gas leak dispersion simulation, *t* = 25 s

Gas leak dispersion simulation, *t* = 30 s

Gas leak dispersion simulation, *t* = 35 s

Gas leak dispersion simulation, *t* = 40 s

Gas leak dispersion simulation, *t* = 45 s

Gas leak dispersion simulation, *t* = 50 s

Gas leak dispersion simulation, *t* = 55 s

Gas leak dispersion simulation, *t* = 60 s

Gas leak dispersion simulation, *t* = 65 s

Gas leak dispersion simulation, *t* = 70 s

Gas leak dispersion simulation, *t* = 75 s

Gas leak dispersion simulation, *t* = 80 s

Gas leak dispersion simulation, *t* = 85 s

Gas leak dispersion simulation, *t* = 90 s

Gas leak dispersion simulation, *t* = 95 s

Gas leak dispersion simulation, *t* = 100 s

Gas leak dispersion simulation, *t* = 105 s

Gas leak dispersion simulation, *t* = 110 s

Gas leak dispersion simulation, t = 115 s

Gas leak dispersion simulation, t = 120 s

Gas leak dispersion simulation, *t* = 125 s

Explosion pressure wave, *t* = 1.2 s

Explosion pressure wave, *t* = 1.22 s

Explosion pressure wave, t = 1.23 s

Explosion pressure wave, t = 1.24 s

Explosion pressure wave, t = 1.25 s

Explosion pressure wave, t = 1.253 s

Explosion pressure wave, *t* = 1.26 s

Explosion pressure wave, *t* = 1.27 s

Explosion pressure wave, t = 1.28 s

Explosion pressure wave, *t* = 1.29 s

Explosion pressure wave, *t* = 1.295 s

Explosion pressure wave, *t* = 1.3 s

Explosion pressure wave, *t* = 1.32 s

Physics highlights

- Ventilation should be good before leak starts to dilute the gas
- Gas cloud develops fast, within 30-60 s for large leaks.
 - Light gas collects under roofs
 - Heavy gas spreads along deck
- Explosion starts slow and then ... boom!
 - Effects that decides when it takes off and how high it gets:
 - Size (distance) of combustible gas cloud
 - Congestion
 - Confinement

Example FPSO in arctic

- Turret moored FPSO
- Winterized process area

15 deg wind heading

DNV GL © 2013 20 May 2014

20 May 2014

DNI∜SGL

Wind sped inside process area, 15 deg heading

DNV GL © 2013 20 |

20 May 2014

20 May 2014

DNV GL

Velocity vectors, 15 deg heading

20 May 2014

20 May 2014

Velocity vectors transverse planne, 15 deg heading

DNV GL © 2013 20

20 May 2014

20 May 2014

DNI∜5GL

Example dispersion simulations. Gas under roof – light gas

20 May 2014

20 May 2014

Example dispersion simulations. Gas under roof

Below 0.5

Job=012114. Var=ER (-). Time= 300.003 (s). X=180 : 294.5, Y=62 : 129, Z=93 : 132 m

ĠL

Applied designs that prevents and mitigates explosions

Preventive effects are preferred over mitigating effects

- Reduces both explosion and fire risk
- Focus on improving ventilation and dispersion
 - Inherent safe design
 - Active ventilation control
 - Active weather panels
 - Platform orientation

Wind Chill and Outdoor Operations Theory and principles

Theory and Principles - Cold Challenges

- Cold stress factors
 - Wind
 - Precipitation and moisture
 - Low temperatures
 - Direct exposure to cold surfaces
 - Activity
 - Work clothing
- Wind chill and outdoor operations
 - Wind chill temperature (°C)

 $t_{\rm WC} = 13,12 + 0,6215 \cdot t_a - 11,37 \cdot v_{10}^{0,16} + 0,3965 \cdot t_a v_{10}^{0,16}$

Effective Heat Loss per time, WCI (W/m2) (ISO/TR 11079)

$$I_{WC} = 1.16 \left(10.45 + 10u^{\frac{1}{2}} - u \right) (33 - T)$$

Effective temperatures considering wind chill

Effective temperature as function of wind and ambient temperature (ISO11079:2007 / ISO 15743; Ergonomics of the thermal environmet. Cold workplaces Risk assessment and management)

	T _{luft} (°C)	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50
Vind (km/t)													
Flau vind	5	4	-2	-7	-13	-19	-24	-30	-36	-41	-47	-53	-58
Svak vind	10	3	-3	-9	-15	-21	-27	-33	-39	-45	-51	-57	-63
Lett bris	15	2	-4	-11	-17	-23	-29	-35	-41	-48	-54	-60	-66
Laber bris	20	1	-5	-12	-18	-24	-30	-37	-43	-49	-56	-62	-68
	25	1	-6	-12	-19	-25	-32	-38	-44	-51	-57	-64	-70
Frisk bris	30	0	-6	-13	-20	-26	-33	-39	-46	-52	-59	-65	-72
	35	0	-7	-14	-20	-27	-33	-40	-47	-53	-60	-66	-73
Liten kuling	40	-1	-7	-14	-21	-27	-34	-41	-48	-54	-61	-68	-74
	45	-1	-8	-15	-21	-28	-35	-42	-48	-55	-62	-69	-75
Stiv kuling	50	-1	-8	-15	-22	-29	-35	-42	-49	-56	-63	-69	-76
	55	-2	-8	-15	-22	-29	-36	-43	-50	-57	-63	70	-77
	60	-2	-9	-16	-23	-30	-36	-43	-50	-57	-64	-71	-78
Sterk kuling	65	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-79
	70	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-80
Liten storm	75	-3	-10	-17	-24	-31	-38	-45	-52	-59	-66	-73	-80
	80	-3	-10	-17	-24	-31	-38	-45	-52	-60	-67	-74	-81

Uncomfortably cold Very cold, risk for frost bites Risk for skin frost damage after 10 min Risk for skin frost damage after 2 min

NORSOK and US limitations

DNV GL © 2013 20 May 2014

20 May 2014

DNI∜GL

NOR SOK S-002 Wind Chill Limits

Other influences

- Night work increased heat loss
- Age Lowered tolerance
- Sex Men tolerate cold better
- Ethnical differences Polars benefit
- Medical conditions heart, Reynaud (likfingre)
- Work intervals

Opimize design:
Wind walls and enclosures to provide weather protection

Potenital explosion risks due to confinement and enclosures: • Gas cloud build-up • No explosion relief Balancing Process safety vs Working environment

Requirements:

- NORSOK S-002, Section 4.4.9/5.8
- NORSOK S-001, Section 15.4.1

Practice - NORSOK Z013 annex F

TYPICAL SCOPE ERA and Wind Chill Analysis

ERA and ACH Assessment

Obtain DAL pressures from ERA. Assess if DAL is acceptable

- NORSOK Z013 Annex F is followed
- Use same geometry model for WCI sims

Assess if minimum required ventilation rate is obtained

- Assess NORSOK S001 criteria of minimum 12 ACH 95% of the time
 - ACH exceedance curve found by combining wind rose with ventilation simulation results
 - The upper 95% ACH percentile read off the curve

ERA

WCI distribution calculations: Unavailability

- WCI distribution for work areas calculated and assessed towards criteria
- >Unavailability calculations considering
 - Distribution of WCI levels
 - Availability per WCI level
 - Work area distribution
- ≻ Criteria:
 - Yearly unavailability < 2%

Outdoor Operation and safety Workshop

Identification, discussion and measures

- Different disciplines including operational personnel attending
- Use ERA and WCI assessment to point at:
 - explosion risk drivers and
 - Challenging work areas wrt wind
- Identify improvement measures
- Find solutions that works and is possible
 - Design
 - Operation
 - Further work

Reference Documents and Standards

- Relevant standards
 - NORSOK S-002 Working Environment, Rev. 4, August 2004
 - NORSOK S-001 Technical Safety, Rev. 4, February 2008
 - NORSOK Z013 Annex F Procedure for Probabilistic Explosion Simulations 2010
 - ISO 15743:2008. Ergonomics of the thermal environment Cold workplaces -Risk assessment and management, Edition 1, November 2008
 - ISO 11079:2007. Ergonomics of the thermal environment Determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects, Edition 1, December 2007
 - ISO 19906:2010. Petroleum and natural gas industries Arctic offshore structures, Edition 1, December 2010
- Reference Reports
 - Health Aspects of Work in Extreme climates, A guide for oil and gas industry managers and supervisors. OGP Report Number 398, 2008
 - Kalde utfordringer. PSA Report number 10-31, ISBN 978-8032-024-7, May 2010,

DESIGN OPTIMIZATION

Applied designs that reduce explosions and improve working areas

Prevent by: Ventilation Dispersion Plus avoid high wind Mitigate by: Venting Explosion reduction Fire reduction

- Preventive effects are preferred over mitigating effects
 - Reduces both explosion and fire risk
- Focus on improving ventilation and dispersion
 - Inherent safe and work place friendly design
 - Active ventilation control
 - Active weather panels
 - Platform orientation

Prevention by inherent safe ventilation design

- Main air comes in through wall openings and in arctic the openings are reduced significantly
 - Optimize WCI vs. dispersion
 - Open as much as possible without breaching WCI requirements
- Avoid gas accumulation under roof
 - More openings high up on the walls
 - Roof openings
Openings along upper parts

Roof design

- Important to get the gas out quickly
- Permanent openings best
 - Open all along roof is best
 - Chimneys not sufficient openings
- Snow and ice challenge
 - Causes build-up of weight which stops explosion release panels
 - Snow can come into the process
 - Separate snow simulations can be performed
 - Heat tracing becomes very extensive

Prevention by inherent safe ventilation design

- Avoid re-circulation flow in process areas
 - FPSO Safety gaps show benefits
 - Blast walls upwind gives re-circulation and poor ventilation
- Limit size of explosion areas
 - Process areas, use plated decks between modules
 - FPSO, use plated 1st process deck
- Minimize blocking by equipment of module air inlets

Prevention by active ventilation control

- Active weather panels in walls
 - Opens when gas is detected
 - Opens when temperature is higher
 - Opens when areas are unmanned
 - New technology ice and snow challenge
- Roof panels
 - Can open when temperature is higher
 - Snow and ice challenge
- Ventilated and heated rooms where most of work is performed
 - Challenge with leak sources inside
- FPSO active thrusters to improve ventilation
- Fans to improve ventilation: last resort
 - Requires large fans
 - Represent ignition source

- Congested equipment and piping away from walls and decks
- Avoid corners in walls
- Reduce congestion by more space
- Minimize blocking of module venting openings
- Use explosion panels in walls and ceilings

Preventive and/or mitigating measures

- Process:
 - Smaller segments
 - Automatic blowdown
 - Quick ESD valves
 - Shutdown of ignition sources
 - Good gas detection
- Fire protection
 - Optimize blowdown vs PFP
 - Use quick blowdown instead of PFP
 - Internal escape route
 - Avoid trapping of smoke by large items

Arctic weather protection options

- Passive Windwalls typically used in the North Sea
 - Wind cladding
 - Porous windwalls
 - Louvres
 - Explosion release panels
- Active weather panels
- Roof design

Active Panel Geometry

- Part of wall has AWP
- Total opening degree is important
- Combination of open, closed and AWP

How AWP can operate / different strategies

- Open on gas detection
 - Often too late to reduce gas cloud
- Automatic operated based on wind and temperature, snow and ice:
 - Open at good weather
 - Close when people are present and weather is bad

Recommendations – Wall designs

- Additional Ventilation where required
 - Higher levels where buoyant release accumulates
 - Alteration to roof opening design to allow more gas to escape
 - Not frequently manned areas
- More Control where required
 - Active weather panels positioned at working heights on lower and upper deck
 - Allows control of wind speed where people will be working
 - Automatic opening during low wind speeds and high temperatures
- Pop Out blast panels
 - Can significantly reduce explosion pressures

LQ, helideck, utility and process location on FPSO

- LQ and helideck upwind to avoid
 - Smoke
 - Exhaust
 - Turbulence
 - Gives poor ventilation to process

- LQ and Helideck downwind
 - Gives better ventilation to process modules
 - Must ensure long enough distance from process to LQ
 - Conflicts with aft offloading

SUMMARY AND RECOMMENDATIONS

Recommended measures

- Layout and process recommendations
- Personal protective wear and equipment
- Temporary windbreaks or active wind walls
- Procedures and operation Work restrictions, "Cold permit"
- Information, coursing and medical preparedness
- Access to heated shelters close to cold working areas

Benefits of combined explosion and wind chill analyses

- Wind chill and explosion challenges identified in early project phase, and not later based on "bad" experiences
- Difficult or costly to implement improvement measures after early design phases
- Decision support for a safe and sustainable design and operation

Thank you!

Asmund.huser@dnvgl.com +47 91730337

www.dnvgl.com

SAFER, SMARTER, GREENER