

Olje og Gass Project: «HMS utfordringer i Nordområdene» Workshop No. 4, 20-21 May 2014, Selbusjøen Hotel

«Design of MODUs for harsh environment operation»

Morten Bøhlerengen HSE Department Manager

- 1. Moss Maritime in brief
- 2. Winterization of MODUs
 - Purpose
 - Objectives
- 3. Winterization measures categories
- 4. Winterization philosophy
- 5. Recommended winterization measures
- 6. «Areas of concern»

Moss Maritime Profile

Core Business

- Licensing of Concepts
- Business Development
- Project Management
- Engineering Assistance

Level of Expertise:

- Natural Gas
- Exploration and Production from Platforms
- Offshore Service Vessels
- Special Projects

Disciplines:

- Process engineering
- Marine machinery, piping & EIT
- Naval architecture
- Structural engineering
- Project Development
- HSE

Moss Maritime - a Leader in Maritime Technology

Moss Semi-Submersible Drilling Platforms

✓ 22 platforms of Moss design are built

✓ 5 more are contracted/under construction

- 3 new contracts 2012– 3 units (2 at HHI, 1 Jurong)
- 2 new contracts 2013- (2 units + options) (1 at HHI, 1+ at SHI)

Moss Maritime:

An experienced Offshore Support Vessel Designer

more than 30 years experience in designing support vessels for the offshore industry Including AHTS, Diving Support and Ice Breaker vessels

Purpose

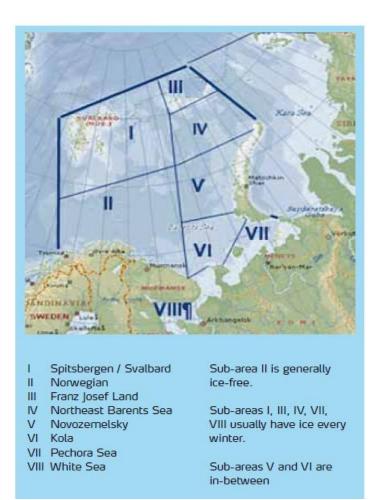
 Ensure that MODUs can operate safely and efficiently in cold climate

Objectives

- Provide protection from freezing
- Provide protection from build-up of snow / ice
- Protection from wind chill

- Material selection
- Anti-icing / anti-freezing measures
 - Enclosure
 - Heat-tracing / insulation
 - Anti-freeze fluid
 - Proper fluids & lubrication oils
 - Continuous flow piping
 - (Vibration and pneumatic panels)
- De-icing measures
 - Steam / hot water
 - Manual removal with showel, etc.
- Wind chill shielding
 - Wind walls / enclosure

- Philosophy to be established by rig owner
- Should define / clarify
 - Operation areas
 - Operation period of the year
 - Design air temperature for structure, equipment and systems (Based on LMDAT and extreme low air temperature)
 - Minimum water temperature (0 to -2 degrees)
 - Operation in open waters or ice-infested waters


• Decides degree of need for winterization measures

 Barents Sea is not necessarily «arctic», ref. «Barents Sea 2020 – Phase III» report (p.61)

In the Barents Sea, environmental conditions vary substantially from north to south and east to west. In the judgment of the Work Group, the regional breakdown for the Barents Sea found in Annex B.16 of the draft ISO 19906 standard does not adequately differentiate the conditions, particularly from north to south. To better harmonize cold risk assessment and management for work operations in the Barents Sea, the Work Group therefore recommends using the climate zones defined by the Arctic and Antarctic Research Institute of St. Petersburg and used in the Barents 2020 Environmental Baseline report. 1

	Requirement
<u>Structural steel</u>	
Above transit waterline	LMDAT
Below transit water line	Lowest Sea Water Temp
Internal heated areas	> 0°C
<u>Marine equipment</u>	
Machinery components	LMDAT
Internal heated areas	> 0°C
Operating limit	LMDAT
Drilling equipment	
Equipment	LMDAT
Operation limit	LMDAT
Safety Critical Equipment	
Structure	LMDAT
Equipment	Lowest value on the annual mean daily lowest temp.
Operation limit	or Lowest ever recorded

Recommended MODU Winterization Measures (1/3)

• Weather shielding / enclosure

- Life boat- and muster stations
- BOP-and X-mas tree handling areas
- Drill floor including derrick (fully or partly cladded)
- Anchor winches
- Hose loading stations
- Potential additional areas
 resulting from wind chill study

• Anti-icing measures

- Primary escape / evacuation routes
- Helicopter deck
- Air vents in exposed areas
- Drain systems in outdoor areas
- Pipe lines in outdoor and unheated indoor areas (e.g fire line)
- Water tanks in exposed areas (e.g ballast tanks in columns)
- Navigation equipment

Recommended MODU Winterization Measures provided operation in ice-infested waters (3/3)

- 1. Hull strengthening (Ice class)
- 2. Provision of riser protection structure
- 3. Provision of anchor chain protection structure
- 4. Fully enclosed derrick & working areas ?

Special area of concern: Effects of Weather Shielding / Enclosure

Positive

Improved working environment

Negative

- Reduced ventilation
- Increased confinement

- Increased explosion pressure in case of explosion
- Increased heat radiation in case of fire

Potential remedies

- Design with weather panels / explosion panels
- Rig design that reduces the need for manual operations in exposed areas during cold periods

«The preferred solution is to rely on natural ventilation for weather protected hazardeous areas»

(Open platform design typically gives100-200 Air Changes per Hour in hazardeous areas 50 per cent of the time)

General areas of concern («R&D issues») (1/2)

- Degree of enclosure of derrick and working areas (pipe deck, riser deck, etc.)
 - Working environment
 - Safety (explosion risk)
 - Ventilation (natural/mechanical)
- Design winterization air temperature for various operation areas in Barenst Sea
- Evacuation and rescue
 - Long distances to support base and other facilities Need for helicopter platform?
 - Traditional EER methods may not be appropriate for parts of the year (i.e. during operation in ice-infested waters)

General areas of concern (R&D issues) (2/2)

Communication / navigation at high latitudes

- Magnetic conditions
- Lack of satellite coverage
- Energy optimization
- Working environment
 - Temperature / Wind chill / Darkness
 - Today's industrial standard (NORSOK S-002) probably drives the design to be more enclosed design than necessary which result in

- increased confinement (= increased risk of explosion)
- reduced line of sight

Outdoor operations - NORSOK S-002 too conservative?

NORSOK S-002 (Sec. 5.8):

Wind chill index: WCI = $1.16 \times (10.45 + 10 \times U^{0.5} - U) \times (33 - T)$

15%	-17.5°C	-20°C	
-110	-17,5 C		
582	612	642	
1548	1629	1710	
1689	1777	1865	
1786	1879	1972	
1854	1951	2048	
1903	2002	2101	
1937	2038	2138	
1958	2060	2162	
1970	2073	2175	
1974	2077	2179	
1971	2073	2176	
1961	2063	2165	
	1548 1689 1786 1854 1903 1937 1958 1970 1974 1971	582 612 1548 1629 1689 1777 1786 1879 1854 1951 1903 2002 1937 2038 1958 2060 1970 2073 1974 2077 1971 2073	

Outdoor operations - NORSOK S-002 too conservative?

ISO 15743:2008 "Ergonomics of the thermal environment Cold workplaces, Risk assessment and management" provided a less conservative approach compared to NORSOK S-002

Tai	_{ir} (°C)	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50
Wind (km/h)													
Light air	5	4	-2	-7	-13	-19	-24	-30	-36	-41	-47	-53	-58
Light breeze	10	3	-3	-9	-15	-21	-27	-33	-39	-45	-51	-57	-63
Gentle breeze	15	2	-4	-11	-17	-23	-29	-35	-41	-48	-54	-60	-66
Moderate	20	1	-5	-12	-18	-24	-30	-37	-43	-49	-56	-62	-68
breeze	25	1	-6	-12	-19	-25	-32	-38	-44	-51	-57	-64	-70
Fresh breeze	30	0	-6	-13	-20	-26	-33	-39	-46	-52	-59	-65	-72
Fresh breeze	35	0	-7	-14	-20	-27	-33	-40	-47	-54	-60	-66	-73
Strong broose	40	-1	-7	-14	-21	-27	-34	-41	-48	-55	-61	-68	-74
Strong breeze	45	-1	-8	-15	-21	-28	-35	-42	-48	-56	-62	-69	-75
	50	-1	-8	-15	-22	-29	-35	-42	-49	-57	-63	-69	-76
High wind	55	-2	-8	-15	-22	-29	-36	-43	-50	-57	-63	-70	-77
	60	-2	-9	-16	-23	-30	-36	-43	-50	-57	-64	-71	-78
Frach gala	65	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-79
Fresh gale	70	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-80
Strong gala	75	-3	-10	-17	-24	-31	-38	-45	-52	-59	-66	-73	-80
Strong gale	80	-3	-10	-17	-24	-31	-38	-45	-52	-60	-67	-74	-81

 $t_{wc} = 13.12 + 0.6215 \text{ x } t_{air} - 11.37 \text{ x } v_{10}^{\Lambda 0.16} + 0.3965 \text{ x } t_{air} \text{ x } v_{10}^{\Lambda 0.16}$

Explanation of colours

	Classification of risk	twc (°C)	Effect
	1	-10 to -24	Uncomfortable cold
	2	-25 to -34	Very cold, risk of frost bits
m	3	-35 to -59	Biting cold, danger of frost bite of exposed skin after 10 minutes
	4	-60 and cooler	Extreme cold, danger of frost bite of exposed skin after 2 minutes

Outdoor operations - NORSOK S-002 too conservative?

Comparison NORSOK S-002 and Canadian regulations ("Work warm-up schedule" developed by the Saskatchewan Department of Labour):

ms km kn	i mi t	bf O	-2	-4	-6	-8	-10	-12	-14	-16	-18	-20	-22	-24	-26	-28	-30	-32	-34	-36	-38	-40	-42	-44	-46	-48	-50
0 0 0	0	0 NOR	NOR	NOR	NOR	NOR	NOR	NOR CAN	NOR	NOR	NOR	HOR CAN 225	HOR CAH 225	HOR CAN 21	HOR CAH 20	HOR CAR III	HOR CAN 11	NOR	NOR	NOR CAN	NOR						
1 4 2	2	1 NOR	NOR	NOR	NOR	NOR	NOR	NOR 232	NOR 220	NOR 208	NOR 192	NOR 176	NOR 164	NOR 152	CAN	CAN	CAN	CAN	CAN	NOT CAN	NOR	CAN	CAN	CAN	CAN	CAN	CAN
2 7 4	4	2 NOR	NOR	NOR	NOR 232	NOR 216	NOR 200	NOR 184	NOR 168		NOR 132	NOR 116	NOR 100	NOR 100	NOR 40	NOR	CAN 225	NOT	NOTCAN	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN
3 11 6	7	NOR						NOR 132			NOR 92	NOR 60	NOR	NOR	NOR	NOR	NOR CAN	CAN	CAN	CAN		CAN	CAN	CAN	CAN	CAN	CAN
4 14 8	9	NOR 236						NOR120			NOR 28	NOR	NOR	CAN	CAN 225	CAN 225	CAN 220	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN
5 18 10	11	NOR 220	NOR 200	NOR 176	NOR 156	NOR 136	NOR 120	NOR 92	NOR 64	NOR 16	NOR	NOR	NOR	CAN							CAN	CAN	CAN	CAN	CAN	CAN	CAN
6 22 12	13	A NOR 208						NOR 72	NOR 18	NOR	NOR	NOR	NOR	CAN							CAN	CAN	CAN	CAN	CAN	CAN	CAN
7 25 14	16	NOR 196						NOR 32	NOR	NOR	NOR	NOR	NOR	CAN	CAN 220	CAN 220	CAN 200	CAN 180	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
8 29 16	18							NOR	NOR	NOR CAN	NOR	NOR	NOR	CAN				CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
9 32 17	#	5					NOR 24	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
10 36 19	#	NOR 168	NOR 144	NOR 120	NOR 96	NOR 64	NOR	NOR	NOR	NOR	NOR CAN	NOR	NOR CAN	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
11 40 21	#						NOR	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
12 43 #	#	6				NOR 20	NOR	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
13 47 #	#						NOR	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
14 50 #	31					NOR	NOR	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
15 54 #	#	7 NOR 144	NOR 116	NOR 92	NOR 44	NOR	NOR CAN	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
16 58 31	#					NOR	NOR CAN	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
17 61 #	#					NOR	NOR CAN	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
18 65 #	#					NOR	NOR CAN	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
19 68 #	#	8		NOR 80		NOR	NOR CAN	NOR	NOR CAN	NOR CAN	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
20 72 #	#	NOR 132	NOR 104	NOR 72		NOR	NOR CAN	NOR	NOR CAN	NOR CAN	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
21 76 41	#					NOR	NOR CAN	NOR	NOR CAN	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
22 79 #	#	9				NOR	NOR CAN	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
23 83 #	51				NOR	NOR	NOR CAN	NOR	NOR CAN	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
24 86 #	#				NOR	NOR CAN	NOR CAN	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
25 90 #	#	NOR 124	NOR 100	NOR 64	NOR	NOR CAN	NOR CAN	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
26 94 51	#	10			NOR	NOR CAN	NOR CAN	NOR	NOR CAN	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
27 97 #	#				NOR	NOR CAN	NOR CAN	NOR	NOR CAN	NOR	NOR CAN	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
28 101 #	#				NOR	NOR CAN	NOR CAN	NOR	NOR	NOR	NOR CAN	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
29 ## #	#	11			NOR	NOR CAN	NOR CAN	NOR	NOR	NOR	NOR CAN	NOR CAN	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN
30 ## #	#	NOR 128	NOR 96	NOR 72	NOR	NOR CAN	NOR CAN	NOR	NOR	NOR	NOR	NOR	NOR	CAN	CAN 200	CAN 200	CAN 180	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN	CAN

mossmaritime

eni saipem

- Current version of NORSOK S-002 (wrt. to outdoor operations) results in more enclosement of working areas than perhaps necessary which have the following negative consequences:
 - Increased risk of explosion due to confinement
 - Reduced «line of sight» (crane operations)
 - (Weight / costs)
- NORSOK S-002 stipulates unavailability shall be less than 2 % on a yearly basis – models do not at all have sufficient accuracy to verify such.
- «Barents 2020» states that NORSOK S-002 is too conservative wrt. to outdoor operations but the requirement is still in force and thus a challenge until next revision

Takk for oppmerksomheten!

