

Fitness for Service of Casing materials for sour service

Challenges when operating existing wells under souring conditions in mature fields.

30.09.2024 Prepared by: Ryan Graham, Frode Bredal and Øyvind Lunde Presented by; Øyvind Lunde, Supervisor Well Integrity

Mature Fields and H_2S

- ConocoPhillips has been operating in the Greater Ekofisk Area (GEA) since 1969
- H₂S was not an issue during early field life
- High H₂S levels was not expected, so early well design did not include sour-service requirements
- In-reservoir H₂S generation can be a very slow process
- Ekofisk seawater injection began in the late 1980s, H₂S concentrations became a challenge 25 years later

Recent H₂S Activity and Challenges in GEA

- An isolated case of highly-increased H₂S concentrations occurred during Eldfisk S operations in 2018. Downhole conditions (temperature, sulfate supply) were optimal for SRB activity. Mechanism was outside of the normal generation process.
- This incident prompted a significant emphasis on managing H2S.
- Discovered that even wells with relatively low H₂S concentrations could end up with elevated risk for equipment failure in several operational phases.

SSC-induced failure in casing couplings

H₂S: Operational Issues and Well Integrity Challenges

• No special sour-service requirement for well components existed for wells prior to changes made in our "bases of design" in 2020-21.

- Most of our active wells were designed and built before this revision
- One of our field has lift gas that contains some H₂S, this gave us additional challenges
- Secondary barrier envelope identified to be the main concern
- Discovered that the most challenging condition was during pumping operations and longer "shut-in" periods, due to lower temperature
- Material H₂S tolerance tends to increase at higher temperatures (i.e. production) and in most cases is non existing above a certain temperature

Historic Well design **Primary Barrier** • 17/4 PH 0.5 psi partial pressure limit 17/4 PH 0.5 psi partial pressure limit 0.5 psi K-500 (Monel) 0.5 psi partial pressure limit K-500 (Monel) 0.5 psi partial pressure limi 316SS 13Cr L80 15 osi partial pressure limit 1.5 psi 1.5 psi partial pressure limit F6MN

Secondary Barrier

	Q125	Below 107°C : 0.05 psi partial pressure. Unlimited above this temperature.	
	P110	Below 80°C : 0.05 psi partial pressure. Unlimited above this temperature.	
0.05 psi	D-95 HC	Below 80°C : 0.05 psi partial pressure. Unlimited above this temperature.	
77	N80	Below 80°C : 0.05 psi partial pressure. Unlimited above this temperature.	
NZ	N80 Type Q	Below 65°C : 0.05 psi partial pressure. Unlimited above this temperature.	

Strategy for improving H₂S operability

- Build an improved monitoring tool and update/make improved procedures
- Revise well design steering documentation
- Documentation of well equipment
- Deviations with compensating measures
- Increase safe operating window to eliminate deviations and restrictions

NORSOK D-010:2021+AC2:2021

5.2.3 Well barrier requirements

5.2.3.1 Minimum number of well barrier envelopes in well construction-, production / injection-phases and after permanent P&A

The general principle is to operate with two defined well barrier envelopes against over-pressure and/or flow potential. <u>Table 1</u> below states the minimum number of well barriers required for the different lifecycle phases for a well.

5.2.3.2 Well barrier selection and construction principles

The well barrier envelope shall consist of qualified WBEs, and be designed and constructed with the capability to:

- a) withstand the maximum differential pressure and temperature it can be exposed to (accounting for depletion or injection regimes in adjacent wells);
- b) be leak tested, function tested or verified by other methods;
- c) ensure that no single failure of a well barrier or WBE can lead to uncontrolled release of formation fluids and well fluids throughout the life cycle of a well;
- d) re-establish a failed well barrier or establish another alternative well barrier;
- e) operate competently and withstand the environment for which it can be exposed to for its intended service life;
- be independent of other well barrier envelopes and avoid having common WBEs to the extent possible.

GEA H₂S Monitoring

- Multidisciplinary H₂S group established to create new procedures and tools
- Sour service dashboard created for scalable overview of H₂S picture, from field-wide to test-specific per well
- Detailed data and calculations are displayed and mapped in configurable monitoring system
- Produced H₂S levels measured by sampling at test separator
- Gas lift system has continuous H₂S monitoring

Revised well design to make new wells more robust.

- Updated our bases of design to meet the changed well conditions in our fields
 - New design criteria with respect to H2S tolerance:
 - Primary barrier envelope: 1,5 Partial pressure
 - Secondary barrier envelope : Unlimited Partial pressure

Primary elements	H ₂ S PP limit Old design	H ₂ S min. PP limit 6489 improved	Comment		MSL: MINN Mudline: MINN XMT: 5 1
1. Tubing	1.5 psi	1.5 psi	No change		3 CAMERO Wellhead CAMERO
2. Production Packer	1.5 psi	1.5 psi	No change (QAQC: 110 ksi)	*	8 18.76 ⁻
3. DHPG/ mandrel	1.5 psi	1.5 psi	No change	P1 80	
4. SPM	1.5 psi	1.5 psi	No change		
4. GLV, Dummies	0.5 psi	1.5 psi	17/4 PH/K-500 -> 13%Cr /Inc.718	<u>\$7 010</u>	17" TOC 1802 ft 13.625" 1802 ft
5. ASV	1.5 psi	1.5 psi	No change	2.00 ppg	LOT BM 12.26 pp
6. DHSV	3.0 psi	3.0 psi	No change		15.97 p
7. Deep Liners (barriers)	0.05 psi (stim)	Unlimited	Q-125 -> TN110SS / L-80	56 949 Formate 5)
Secondary elements				P12 021 8 5	LOT BM 15.54 pp
1. XMT/spool piece	1.5 psi	Unlimited	Body: F6NM replaced with low alloy CS + 625 full clad Valve internals: F6NM replaced with Nickel alloys	P3 R (4) P4 R (4) P10 S9 014 P6 R (4)	10.75" 1 8211 ft
2. WH /valves	1.5 psi	Unlimited	Body: No change Pack off: F6NM-> Nickel alloys Valve internals: F6NM replaced with Nickel alloys	P7 23 3 P5 59 012 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.625" T 10765 ft
3. VR plug	Unlimited	Unlimited	No change	P11	P10 S9
4. 10-¾ Liner	0.435 psi	Unlimited	TN125 SS connections-> 110SS connections	015	Top Re: 11129 ft 9556 ft
5. 10-¾ Liner Hanger (Vflex)	0.435 psi	Unlimited*	110 -> 80 ksi , * > 38 deg C	P9 013 00 00 016 00 00 017 018 00 00	
6. HASCV	0.5 psi	Unlimited	Monel K-500 -> Inc. 718	019 20 20 20 20 20 20 20 20 20 20 20 20 20	

• New requirements for documentation (DFO) on equipment to be implemented to ensure "in house" availability of key information an all our barrier elements during the well's lifetime.

H₂S: Operational Issues and Well Integrity Challenges

Environment

Tensile

stress

- Each well has hundreds of components which may be exposed to H₂S
- Identifying and classifying these components is a major task
- Components in barrier envelopes have the highest priority
- Operating limits are set in place for production (e.g. H₂S partial pressures in gas lift)
- Deviations with mitigating measures are in place where barrier elements are at risk
- Wells are individually re-assessed before interventions

Costly compensating measures

- Plug setting to protect tubulars during shut in e.g., periodically maintenance shutdowns
- Reduced gaslift pressure
- GLV replacements before pumping operations and shut-in
- Liquid filling of annulus before pumping operations
- Use of scavenger to protect tubulars and other equipment during shut in and pumping
- Interventions needed for several of the compensating measures
 - Drives risk by itself
 - Costly
 - less value-added interventions

Material testing

- Increase safe operating window to be able to understand risk and minimize need for deviations and restrictions
 - Requalification of materials by laboratory testing is an effective way to raise limits
 - GEA is especially well-suited for material-testing technique
 - Consistent materials and field conditions
 - Straightforward method and application
 - Rapid results and implementation (2-4 months)
 - Very low cost compared to benefits

Re-certification of materials for sour service

- Current pH₂S limits assume lowest material quality and least-favourable operating conditions
- Material-specific pH₂S limits may be increased by method defined in ISO-15156, Annex B
- Minimum of 9 tests required to recertify each material and condition (3 heats x 3 samples)
 Samples must represent the upper end of hardness range for each grad
- A single tensile failure on any sample/heat disqualifies a given condition
- Results apply to all casing, liner and tubing materials in each grade
- Higher material hardness = Lower H_2S tolerance

Pre-testing pH₂S limits for carbon steels

Material	Default limit: H ₂ S partial pressure	Conditions		
Q-125		Unlimited above 107°C, 0.05 psi below		
P-110		Unlimited above 80°C, 0.05 psi below		
D-95 HC	0.05 psi (Temp-dependent)	Unlimited above 80°C, 0.05 psi below Unlimited above 80°C, 0.05 psi below		
N-80				
C-95		Unlimited above 65°C, 0.05 psi below		
N-80 Type Q		Unlimited above 65°C, 0.05 psi below		

Standard NACE TM0177-A tensiles

Background: Material Testing

- Review available material certificates and identify most susceptible materials based on hardness/strength
- Start test program with most susceptible material, test three parallels and expand to two more materials if a pass is obtained.
- Increase or reduce severity to identify safe operational envelope for the subject materials based on test result outcome.
- Testing method is defined in ISO 15156-2 standard for use of carbon steels in H2Scontaining environments

SSC testing using NACE TM0177 Method A specification

Annex B (normative)

Qualification of carbon and low-alloy steels for $\rm H_2S$ service by laboratory testing

B.1 Requirements

This annex specifies requirements for qualifying carbon and low-alloy steels for $\rm H_2S$ service by laboratory testing. Requirements are given for qualifying resistance to the following cracking mechanisms.

SSC Testing: P110 and Q125

Begin testing with most-vulnerable materials under worst-case conditions for GEA

- Demonstrate that GEA downhole environment is consistent and well-monitored
- Set testing conditions to cover entire field (P99.7+)

Phase 1, intial conditions

	Material details	Axial	pН	25	Time to		Days on
Material		(%SMYS)) (psi)	(kPa)	failure	Final pH	test
		(70511115)			(days)		test
		50	0,5	3,45	NA	4,1	Satisfactory
					NA	4,14	Satisfactory
					NA	3,98	Satisfactory
		76,5	0,5	3,45	NA	4,54	Satisfactory
	10.3/4" x 55.5 PPF				NA	4,59	Satisfactory
P110	Heat No. 81362				NA	4,51	Satisfactory
110	P110-PSL3	50	1	6,9	NA	4,34	Satisfactory
	F 110-F 3L3				NA	4,04	Satisfactory
					NA	3,91	Satisfactory
		76,5	1	6,9	NA	4,34	Satisfactory
					NA	4,46	Satisfactory
					NA	4,58	Satisfactory
		50	0,5	3,45	NA	4,37	Satisfactory
					NA	4,36	Satisfactory
	5" x 23.2 PPF Heat No. 234444				13	3,98	
		76,5	0,5	3,45	7	4,08	
					20	4,58	
0125				/	8	4,24	
Q125		50	1	6,9	28	4,55	
	Q125-Type 1				NA	4,28	Satisfactory
				/	13	4,13	
		76,5	1 /	6,9	8	4,12	
					6	3,94	
					6	4,1	

Phase 2, two more P110 at 1 psi and redo Q125 at reduced pH2S

		Axial	pH2S	Time to		Days on	
Material	Material details	(%SMYS)	(psi)	failure (days)	Final pH	test	
		50	1,5	NA	4,48	PASS	
	10.3/4" x 55.5 PPF			NA	4,5	PASS	
	Heat No. 81362			NA	4,41	PASS	
	P110-PSL3	76,5	1,5	NA	4,49	PASS	
	FIIO-Fals			NA	4,48	PASS	
P110				13	4,27	Failed	
PIIU	9.7/8" x 68.38 PPF	76,5	1	NA	4,57	PASS	
	Heat No. 97819			NA	4,51	PASS	
	P110-PSL3			NA	4,49	PASS	
	10.3/4" x 55.5 PPF	76,5	1	NA	4,59	PASS	
	Heat No. 18310			NA	4,6	PASS	
	P110-PSL3			NA	4,6	PASS	
		50	0,1	NA	4,41	PASS	
				NA	4,51	PASS	
				NA	4,46	PASS	
		76,5	0,1	NA	4,52	PASS	
				NA	4,57	PASS	
	5" x 23.2 PPF			NA	4,6	PASS	
Q125	Heat No. 23444 Q125-PSL3	50	0,25	NA	4,56	PASS	
				NA	4,58	PASS	
				NA	4,55	PASS	
		76,5	0,25	15	4,3	Failed	
				NA	4,58	PASS	
				NA	4,55	PASS	
				Element R	ef: M300129 – I	ssue 01	
	NAME OF TAXABLE PARTY.				and the second se	100 million (100 m	

Phase 3, two more P110 at 1,5 psi and two more Q125 at 0,1 psi

Increased H2S partial-pressure limits for casing materials

Results

- P110 certified to 1.0 psi pH₂S at all temperatures to maximum design stress
 - 20X increase from pre-test limit
- Q125 passed testing to 0.1 psi pH₂S at all temperatures to maximum design stress

Current testing activity

- Q125 final certification
- Elevated-temperature testing (Q125 at 50 °C)

Qualified limit, H₂S partial pressure	Material Grade	Pre-Testing Limit (ISO 15156-2, Table A.3)	Post-Testing Limit (Annex B procedure)	Ongoing and Potential Further Testing
	Q125	0.05 psi below 107°C	0.1 psi @ all temps	In progress: 0.25 / 0.5 psi @ >50 °C
	P110	Below 80°C	1.0 psi @ all temps	1.5+ psi @ elevated temp
0.05 psi	D95-HC	Below 80°C	Pending	Material is out of production May require P&A retrieval
	N80	Below 80°C	Pending	Sourcing from P&A and supplier's global operations
	N80 Type Q	Below 65°C	Pending	Available for testing

ConocoPhillips 15

Ongoing and Potential Further Testing Work

- Elevated-temperature tests (ongoing for Q-125)
- Requalification tests for more materials (e.g. N80, proprietary material grades)
- High-pressure SSC testing to certify EPP factor

SSC testing continued to improve conditions for \sim 50 Q125 wells : Test at 0,25 psi pH₂S at 50C

Installation	•	Grade	Csg Top (ft)	Top Temp (°C)	
	11 3/4"	Q125	55	2	
	11 3/4"	Q125	55	2	
	11 3/4"	Q125	59	2	DEVIATION
	11 3/4"	Q125	61	2	Ę
	11 3/4"	Q125	152	2	2
	13 5/8"	Q125	163	2	<u> </u>
	13 5/8"	Q125	190	2	ž
	11 3/4"	Q125	2462	21	
	11 3/4"	Q125	3236	32	
	7 3/4"	Q125	4852	54	
	10 3/4"	Q125	4892	55	
	10 3/4"	Q125	5446	62	
	11 3/4"	Q125	5634	65	
	9 5/8" x 9 7/8"	Q125	5920	69	
	9 5/8" x 9 7/8"	Q125	6613	79	
	9 5/8"	Q125	6743	80	
	9 5/8" x 9 7/8"	Q125	6806	81	
	9 5/8"	Q125	7027	84	
	9 5/8" x 9 7/8"	Q125	7066	85	
	9 5/8" x 9 7/8"	Q125	7751	94	
	9 7/8"	Q125	7817	95	
	9 5/8" x 9 7/8" x 10 3/4"	Q125	7934	97	
	9 5/8" x 9 7/8"	Q125	8048	98	
	9 5/8" x 10 3/4"	Q125	8075	99	
	9 5/8" x 9 7/8" x 10 3/4"	Q125	8267	101	z
	9 5/8" x 9 7/8"	Q125	8300	102	ō
	9 5/8"	Q125	8302	102	
	9 5/8" x 9 7/8"	Q125	8861	110	NO DEVIATION
	9 5/8" x 9 7/8" x 10 3/4"	Q125	8949	111	3
	9 7/8"	Q125	9204	115	1
	9 5/8"	Q125	9310	116	ō
	9 5/8" x 9 7/8" x 10 3/4"	Q125	9405	117	z
	9 7/8" x 10 3/4"	Q125	9425	118	
	9 5/8" x 9 7/8" x 10 3/4"	Q125	9725	122	
	9 5/8" x 9 7/8"	Q125	9842	123	
	9 5/8" x 9 7/8"	Q125	9870	124	
	9 5/8" x 9 7/8"	Q125	9981	125	
	9 5/8" x 9 7/8" x 10 3/4"	Q125	10031	126	
	10"	Q125	10191	128	
	9 5/8" x 9 7/8"	Q125	10480	132	
	9 5/8" x 9 7/8" x 10 3/4"	Q125	10771	136	
	10"	Q125	10815	137	
	9 5/8" x 9 7/8" x 10"	Q125	11068	140	
	9 5/8" x 9 7/8"	Q125	11406	145	
	9 5/8" x 9 7/8" x 10"	Q125	11434	145	
	9 5/8" x 9 7/8"	Q125	11892	152	
	9 5/8" x 9 7/8"	Q125	12713	163	

Q125 Casings (Excluding liner elements isolated below packer depth)

ConocoPhillips 17

Going forward: Increased H₂S operational limits for wells

- Stress-modelling analysis
 - Operating conditions where components may be exposed to unacceptable SSC risk can be predicted by accurate simulation techniques (e.g. WellCat).

 Qualify a GEA-specific effective partial pressure (EPP) factor for reduced downhole H₂S reactivity (e.g. fugacity)

Summary

- Even relative low concentration of H2S can be a challenge in some operational phases/operations in wells that is not build for sour service
- Surveillance and sampling processes on all relevant wells is important
- Documentation on barrier elements (material spec etc.) is key
- Compensating measures can be very costly
- Material testing is a good way of setting/expanding the operational envelope and better understanding the risk.
- Stress modeling and Effective partial pressure methods is important tools to further understand risk and your real operational envelope

artial Pressure (psi) - SIWHP ACT selected p

1/1/2003

0.200

