

Downhole chemical injection – the troublemaker

1 October 2024

Kristin Gjerstad Kjørsvik

Agenda

- Oda introduction
- The issues
- Asphaltene & scale inhibitor injection system design
- Challenge 1: Testing of downhole check valves
- Challenge 2: Backflow leading to risk of blockage
- Lessons learned
- Q&A

Oda PL405

Sval 70% (Operator), AkerBP 15%, DNO 15%

14km tie-back to Ula (250 km off the Norwegian coast). Water depth is approximately 65m.

- 10 inch rigid pipe Production Flowline
- 10 inch rigid pipe Water Injection Flowline
- Umbilical with integral service line

Developed with a subsea 4 slot subsea production system (SPS) including;

- Two oil production wells (B-1 and B-3)
- One water injection well (B-2)

Production started in 2019

- B-1 were re-drilled in 2022
- Cease of production 2028

The issues

Difficult to perform pressure tests of downhole check valves due to:

- High hydrostatic pressure in downhole injection line (scale inhibitor having high density)
- Temperature effect from shutting in chemical injection

Blockage of downhole asphaltene injection line due to:

- Backflow of well fluids through the check valves into the downhole injection line
- Asphaltene inhibitor being sensitive to contamination (water, well fluids, solids)

Asphaltene and scale inhibitor injection system design

Umbilical injection lines 14km - 15.88mm ID

Downhole injection system XMT valves

• Two valves in series

Downhole capillary lines

• 2500m - 6.48mm ID

Downhole check valves

- 4.8mm ID
- B-3 AH: check valve incl. filter
- B-1 AH: check valve w/o filter

Periodic inflow testing as per NORSOK D-010. All valves in the downhole chemical injection system are tested.

CHALLENGE 1:

Testing of Oda downhole check valves

- High hydrostatic pressure in scale inhibitor line → not able to achieve sufficient dP over the downhole check valves
- Temperature effect from shutting in chemical injection/well → difficult to stabilise pressure

Test direction From well towards umbilical

CHALLENGE 1:

Testing of Oda downhole check valves

- High hydrostatic pressure in scale inhibitor line → not able to achieve sufficient dP over the downhole check valves
- Temperature effect from shutting in chemical injection/well → difficult to stabilise pressure

Test direction From well towards umbilical

CHALLENGE 1:

Testing of Oda downhole check valves

- High hydrostatic pressure in scale inhibitor line → not able to achieve sufficient dP over the downhole check valves
- Temperature effect from shutting in chemical injection/well → difficult to stabilise pressure

Test direction From well towards umbilical

CHALLENGE 2:

Backflow leading to risk of blockage

Negative $dP \rightarrow risk$ of back-flow into downhole chemical injection lines (valve test or stop in chemical injection)

Lessons learned from Oda

Design and procedures shall take into account that there will be some leak through the downhole check valves

- Keep system at constant over-pressure
- Monitor pressure during periods where inhibitor is not injected
- Monitor friction loss in downhole injection line during injection of inhibitor
- Avoid convoluted check valve/filter sub design if possible
- Evaluate to use higher ID downhole injection line
- Evaluate to install spare downhole injection line

Lessons learned from Oda

Chemical quality and qualification control is critical for downhole chemical injection

- Implement strict QC specification for chemical being injected downhole
- Avoid partly filled chemical tanks to be supplied offshore
- Chemical qualification to include water tolerance and well fluid compatibility assessments
- Routine (ex. weekly) flushing/injection with inhibitor

White sticky droplets formed when mixing AI with water

Questions?

