Electro-magnetic fields from floating offshore wind & potential impacts to marine fauna

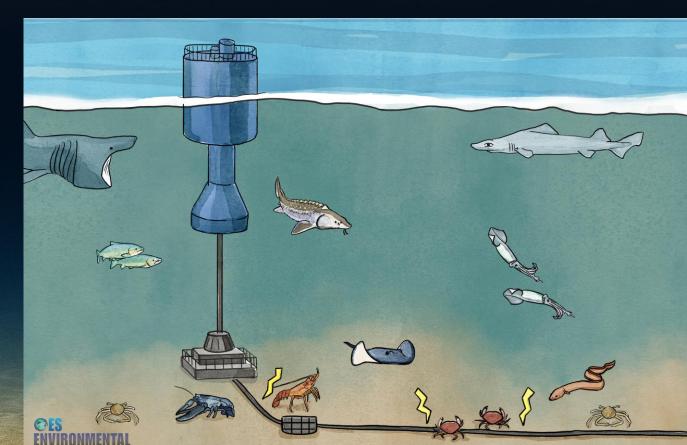
Laura Williamson Zoe Hodgson

N

All contents © OSC 2022

Literature review

Barrier effects
 Ghost fishing
 Electro-Magnetic Fields (EMF)


Report available on Equinor website

Offshore Norge 1 November 2023

Outline

- What are EMFs?
- What causes EMFs?
- How do animals sense EMFs?
- What are potential impacts to:
 - Marine mammals
 - Diving seabirds
 - Turtles
 - Sharks
 - Bony fish
 - Invertebrates
- Knowledge gaps

What are EMFs

Electric fields = e-fields

- Produced by difference in electric potential (voltage)
- Can often be shielded to reduce impacts

Magnetic fields = b-fields

- Magnetic materials & electric currents surrounded by b-fields
- Not contained by shielding

Vectors = directional (unlike °C, pressure, etc.) Can add to / subtract from other fields

Offshore Norge 1 November 2023

Sources of EMFs

Natural sources

- Earth's geomagnetic field (GMF)
- Magnetic rocks
- Lighting
- Solar wind
- Geological movement
- Movement of water/organisms through GMF
- Living organisms
 Heartbeat, nerves, ion exchange
 - 🧼 Stun prey

Anthropogenic sources

- Power cables (AC or DC)
- Renewable energy devices
- Telecommunication cables
- Cathodic protection systems
- Heating of O&G pipelines

Sensing EMFs

Electroreception

- Detect e-fields
- Foraging & prey detection
- Predator avoidance
- Social/reproductive behaviour

Magnetoreception

Detect b-fields

- Navigation
- Homing behaviour
- Orientation
- Biogenic magnetite
 Electromagnetic induction
 Optical pumping

Marine mammals


- Guiana dolphin = evidence of electroreception
 - Previously, platypus was the only known electroreceptive mammal
 - Hairless vibrissal crypts on the dolphin's rostrum serve as electroreceptors
- Many marine mammals likely to detect low-level b-fields
 - Likely through biogenic magnetite
 - Some strandings correlated
 Due to local magnetic distortio
- Pinniped sensitivity to E
 Some species undergo long
 Unlikely to be under inf
 Multiple cables along m

Diving seabirds

- Electroreception not confirmed
- Magnetoreception established
- Directional information about B-fields
 - Likely detected through photochemical reactions in the eyes
- Orientation using b-fields requires prolonged exposure
 - > 1 hr for chickens
- Impacts of EMF on birds through prolonged exposure
 - Reduced breeding success, changes in egg size & development
 - Hindered song development, stress, etc.
 - Highly unlikely to spend enough time in proximity to EMFs underwater
- Diving birds likely using vision for orientation
- No studies on underwater EMFs on diving birds

Turtles

- Electroreception not confirmed
- Magnetoreception established
- Thought to sense GMF at all life stages
 - Used for navigation, migration and orientation
- Geomagnetic sensitivity of 0.00469–4,000 μT
- Hatchlings imprint on natal beach magnetic signature
 - EMFs could disrupt this if near nesting sites

Elasmobranchs

- Strong evidence for both e-field & b-field detection
- e-fields detected through ampullae of Lorenzini
 - \checkmark Some species sensitive to < 1 nV cm⁻¹
- May be able to detect even shielded cables
- Unclear if b-fields detected directly or through electrosense or electromagnetic induction
- Impacts to behaviour which could interrupt foraging, increase energy expenditure, detection of prey/conspecifics
- Directional/navigational miscues

These dots on the snout of the shark are the openings of the Ampullae of Lorenzini

Bony fish

- Evidence for electroreception and/or magnetoreception
 More for pelagic than demersal
- \checkmark Electroreceptors sensitive to as low as 0.1 µV cm⁻¹
- Some species generate e-fields
 - Detect distortions from prey swimming through
 - Actively stun prey or deter predators
- Magnetoreception used for orientation & navigation
- Most studies are lab-based & on freshwater species
 - EMFs may impact development/growth or cause physiological effects
 - Considerable uncertainty regarding field & cumulative impacts
- No impacts to salmon/sturgeon migrations

Invertebrates

- Evidence for electroreception and/or magnetoreception
 Arthropods, molluscs & echinoderms
- \checkmark Decapods may be sensitive to b-fields a 5 µT & use GMF
- Potential for impacts to navigation, orientation & homing
- Some avoidance/burrowing behaviour from polychaetes & lobsters

Knowledge gaps

- Most research to date is lab-based
 - Field studies lacking difficult or only a few species/individuals
- Characterisation of EMFs in real-world conditions
 - How these change with environmental variables & power (e.g. wind speed)
- Cumulative effects
- What species are receptive
 - What is their sensitivity to EMF levels

Acknowledgements

Equinor
 Zoe Hodgson, Laura Park & Alex Turvill

