

The Research Council of Norway

Offshore Norway P&A Seminar 2024

SWIPA – a scientifically-based approach for technology qualification

October 24, 2024

Harald Linga, SINTEF, Centre Director SWIPA

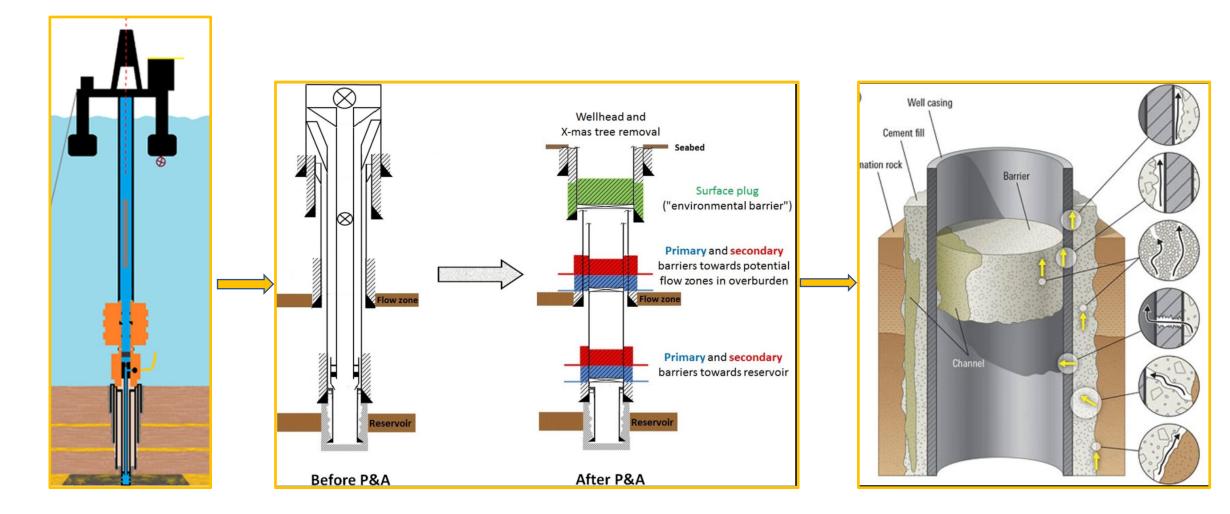
SFI SWIPA – in short

- SFI Centre for Research-based Innovation
 - Purpose; further develop elite, creative research and innovation groups in close collaboration with industry
 - 8 years duration (2020 2028)
 - $\circ~$ Max financing support from RCN 96MM NOK

• SWIPA industry partners

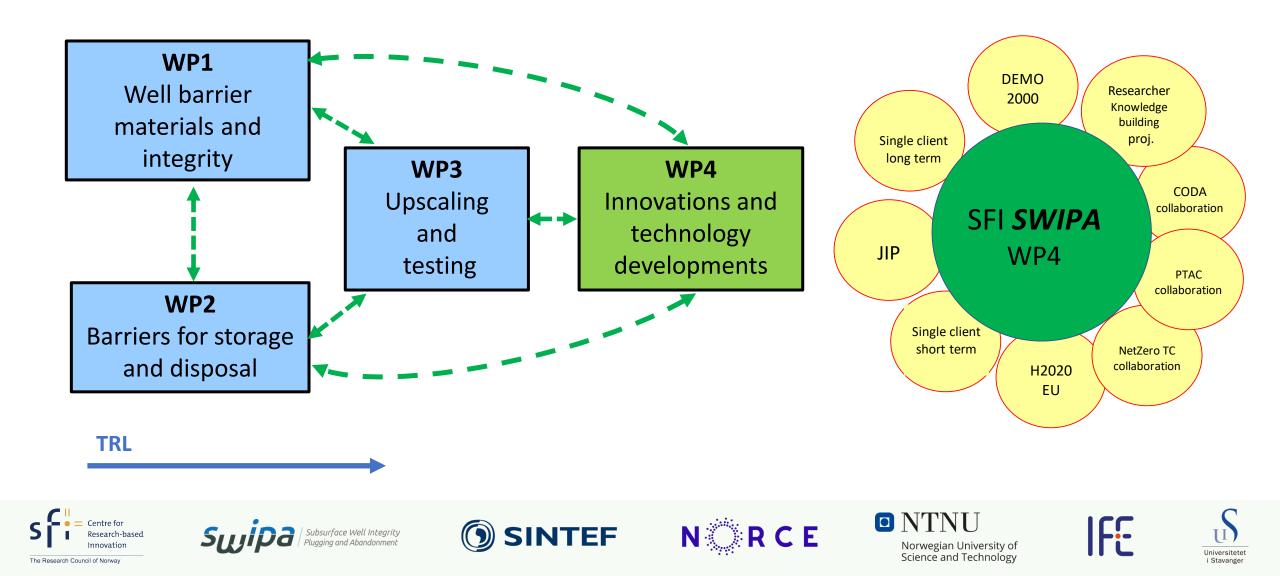
- 5 R&D partners
- 3 financing partners
- 28 in-kind contributing partners
- SWIPA academic partners: Brazil, US, Canada, Japan, the Netherlands

Science and Technology


i Stavange

SWIPA – key tasks and industrial challenges

SWIPA –


industry partners` feedback on well integrity topics

v	Vell integrity topics		nary im rds ind	Partners priority	
no.	Description	Standards & regulations	Operation	Material selection	ranking L- Lowest M- Medium H- Highest
1	Sealant properties of barrier materials	x		x	н
2	Placement of barrier material		х	x	М
3	Verification of barrier integrity	x	x	x	н
4	Re-use of petroleum wells, storage and disposal			x	L
5	P&A tools and operations		х	x	М
6	Evaluation of results, technology qualification, innovations	x	х	x	Н

SWIPA - the Work Packages

WP1 & 2 - Well barrier materials and integrity

Objective:

• A fundamental understanding of different barrier materials, their sealing abilities, failure mechanisms and resulting leak rates

Potential innovations and implementations:

- Allowing for barrier acceptance criteria and "fit-for-purpose", riskbased approach to P&A
- New scientific understanding allowing for new ideas, products and services
- Improving present technology

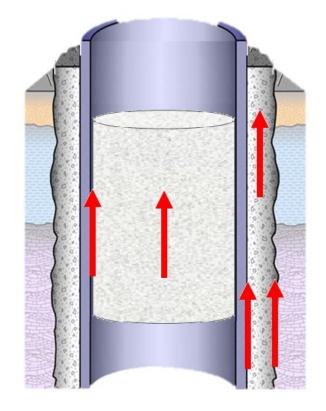
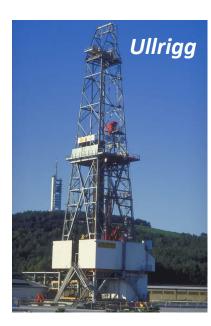
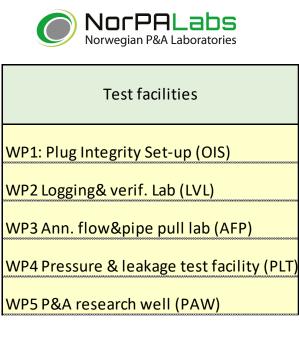


Figure from Vrålstad et al. (2019) Journal of Petroleum Science and Engineering





WP 3 - Upscaling and testing

Objectives

- Investigate physical and operational scaling effects
- Enable development and implementation of new technology through testing under relevant conditions and realistic scale

SWIPA – partners feedback on well integrity topics

V	Vell integrity topics	Primary impact towards industry			Partners priority
no.	Description	Standards & regulations	Operation	Material selection	ranking L- Lowest M- Medium H- Highest
1	Sealant properties of barrier materials	x		х	Н
2	Placement of barrier material		х	х	М
3	Verification of barrier integrity	x	х	х	Н
4	Re-use of petroleum wells, storage and disposal			х	L
5	P&A tools and operations		х	Х	М
6	Evaluation of results, technology qualification, innovations	x	х	х	Н

Universitetet

i Stavanger

Centre for Research-based Innovation

Well integrity and P&A – Standards and regulations

Norway has function-based regulations, where standards are an important factor in the interpretation of the various regulatory requirements.

The regulations refer to standards that provide more detailed descriptions of how things should be done.

The **NORSOK standards** are developed by the Norwegian petroleum industry to ensure adequate safety, value adding and cost effectiveness for petroleum industry developments and operations. Furthermore, NORSOK standards are as far as possible intended to replace oil company specifications and serve as references in the authorities regulations.

NORSOK D-010 – prescriptive-based regulation - I

NORSOK Standard	NORSOK D-010:2021+AC2
	Published: 2021-12-24
	Language: English
	Well integrity in drilling and well operations
	Brønnintegritet i boring og brønnoperasjoner

Example: Cement plug across a section milled interval

Design, construction, and selection

For a section-milled window in casing located in OH:i) shall be 50m MD minimum for the element to act as a single barrier;

ii) shall be 100m MD minimum for the element to act as a combined primary and secondary barrier.

NORSOK D-010 – prescriptive-based regulation - II

NORSOK Standard	NORSOK D-010:2021+AC2
	Published: 2021-12-24
	Language: English
	Well integrity in drilling and well operations
	Brønnintegritet i boring og brønnoperasjoner

Similar examples for:

- Perforate/wash/cement (PWC) cement plug
- Creeping formation

Science and Technology

NORSOK D-010 – resource and further development

The sharing of experience and expertise leads to **best practice in the form of standards**

Participants: Industry; experts from the operators, suppliers, service companies, HAVTIL and the maritime industry.

Prescriptive - based regulation

Knowledge - based regulation

Case: Alternative barrier materials, role of SWIPA

SWIPA

- Barrier material properties
- Operational envelope performance vs. temperature, pressure, sour environment
- 3rd party role

Operational concerns

- Barrier material selection
- Performance testing barrier length
- Placement of barrier material

Impact

- Vehicle /vessel / rig
- Resources / manning
- CO2 footprint

Operators` statements on role of SWIPA

 "A more scientifically based understanding of what is necessary as well barrier, including safety margins, both as a whole and as individual barrier elements will be very valuable. It is within this segment, more fundamental research within P&A, well barriers and integrity, that SWIPA has the potential to play a major role ".

• "With regards to innovation-based technologies, the results from the work could be directly used by the operators in their P&A operations, also in connection with implementing new technology from vendors. In addition it can be relevant to test and perform quality assurance for technology developments on behalf of the industry."

SWIPA - Subsurface Well Integrity Plugging and Abandonment

SWIPA aspects – project execution and deliverables

Check points, performance and documentation

- Measurement accuracy ٠
- Repeatability ٠
- Bulk properties ٠
- Interfacial/ surface properties ۲
- Degradation, long term •
- Envelope pressure and • temperature exposure
- Prediction capability of ٠ performance estimate/ extrapolating performance

Key deliverables:

- Publications,
- Scientific papers peer reviewed Alliances network industry – researchers
- Technology reviews

Concerns:

- Industrial relevance and • implementation
- Confidence to new technology, risk assessment
- Downhole process conditions

SWIPA - Subsurface Well Integrity Plugging and Abandonment

Norwegian University of Science and Technology

SWIPA on the Technology Readiness Level scale

Spin-off: DEMO project

Spin- off: Innovation project

SWIPA

Concept validation	Technology validation	System validation	
Knowledge development	Technology development	Business development	

0	1	2	3	4	5	6	7
Unproven concept -	Demonstrated	Validated concept-	Protype tested-	Environment tested -	System tested -	System installed -	Proven in the field-
Basic research and	concept-	Experimental proof of	System function	Preproduction system	Production system	Production system	Production system
development (R&D) in	Proof of concept as	concept using physical	performance, and	and environment	interface tested	installed and tested	field-proven
papers	desk study or R&D	model tests	reliability tested.	tested			
	experimentation						

Status – some activities to date...

- Robustness testing of 9 barrier materials: geopolymers, other polymers and cements with additives
- Avoidance of leakage from shallow gas zones impact from type cementitious barrier material at low temperature
- Characterisation of **Bi-alloys** as barrier material
- In-line measurement system for slurry properties of barrier material
- Spin-off project CCUS application: **self-healing** of barrier material

NorPA

Norwegian University of Science and Technology

SWIPA – ambitions and expectations

SWIPA aims to obtain a scientific understanding of permanent well barriers allowing for improved well barrier design methodologies.

Key parameters:

costs, materials, barrier lengths and operations

50% cost reductions target for P&A operations Including impact from revised standards and regulations, new operations and well barrier materials.

Bloomberg


Business

Norway Bets on Tech to Cut \$100 Billion

North Sea Oil-Well Bill New research center to study cheaper ways to close old shafts

High abandonment costs can hinder sales of aging oil deposits

By <u>Lars Erik Taraldsen</u>, <u>Laura Hurst</u>, and <u>Morten Buttler</u> July 8, 2020, 1:03 PM GMT+2

SWIPA - Collaboration

- The national team in well integrity www.swipa.no
 - **SINTEF** N R C E

 \Box NTNI Norwegian University of Science and Technology

- International collaboration; universities and industry Australia, Brazil, Canada, Japan, Netherlands, UK, USA
- National & international authorities

ltb

www.swipa.no

